Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.06.20.545832

ABSTRACT

Pulmonary infection with SARS-CoV-2 stimulates host immune responses and can also result in the progression of dysregulated and critical inflammation. Throughout the pandemic, the management and treatment of COVID-19 has been continuously updated with a range of antiviral drugs and immunomodulators. Monotherapy with oral antivirals has proven to be effective in the treatment of COVID-19. However, the treatment should be initiated in the early stages of infection to ensure beneficial therapeutic outcomes, and there is still room for further consideration on therapeutic strategies using antivirals. Here, we show that the oral antiviral ensitrelvir combined with the anti-inflammatory corticosteroid methylprednisolone has higher therapeutic effects and better outcomes in a delayed dosing model of SARS-CoV-2 infected hamsters compared to the monotherapy with ensitrelvir or methylprednisolone alone. Combination therapy with these drugs improved respiratory conditions and the development of pneumonia in hamsters even when the treatment was started after 2 days post infection. The combination therapy led to a differential histological and transcriptomic pattern in comparison to either of the monotherapies, with reduced lung damage and down-regulated expressions of genes involved in inflammatory response. Furthermore, we found that the combination treatment is effective in infection with both highly pathogenic delta and circulating omicron variants. Our results demonstrate the advantage of combination therapy with antiviral and corticosteroid drugs in COVID-19 treatment. Since both drugs are available as oral medications, this combination therapy could provide a clinical and potent therapeutic option for COVID-19.


Subject(s)
Pulmonary Embolism , Lung Diseases , Pneumonia , Severe Acute Respiratory Syndrome , COVID-19 , Inflammation
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.11.22280868

ABSTRACT

Background: The prolonged presence of infectious severe acute respiratory syndrome coronavirus (SARS-CoV-2) in deceased coronavirus disease 2019 (COVID-19) patients has been reported. However, infectious virus titers have not been determined. Such information is important for public health, death investigation, and handling corpses. Aim: The aim of this study was to assess the level of SARS-CoV-2 infectivity in COVID-19 corpses. Methods: We collected 11 nasopharyngeal swabs and 19 lung tissue specimens from 11 autopsy cases with COVID-19 in 2021. We then investigated the viral genomic copy number by real-time reverse transcription-polymerase chain reaction and infectious titers by cell culture and virus isolation. Results: Infectious virus was present in 6 of 11 (55%) cases, 4 of 11 (36%) nasopharyngeal swabs, and 9 of 19 (47%) lung specimens. The virus titers ranged from 6.00E + 01 plaque-forming units (PFU)/mL to 2.09E + 06 PFU/g. In all cases in which an infectious virus was found, the time from death to discovery was within 1 day and the longest postmortem interval was 13 days. Conclusion: COVID-19 corpses may have high titers of infectious virus after a long postmortem interval (up to 13 days). Therefore, appropriate infection control measures must be taken when handling corpses.


Subject(s)
COVID-19 , Coronavirus Infections
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.29.505777

ABSTRACT

Although it has been 2.5 years since the COVID-19 pandemic began, the transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a dead infected body remains unclear, and often, in Japan bereaved family members are not allowed to view in-person a loved one who has died from COVID-19. In this study, we analyzed the possibility of SARS-CoV-2 transmission from a dead body by using the hamster model. We also analyzed the effect of Angel-care--in which the pharynx, nostril, and rectum are plugged--and embalming on reducing transmissibility from dead bodies. We found that SARS-CoV-2 could be transmitted from the body of animals that died within a few days of infection; however, Angel-care and embalming were effective in preventing transmission from the dead body. These results suggest that protection from infection is essential when in contact with a SARS-CoV-2-infected dead body, and that sealing the cavities of a dead body is an important infection control step if embalming is not done.


Subject(s)
COVID-19 , Coronavirus Infections , Severe Acute Respiratory Syndrome
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.26.505450

ABSTRACT

The prevalence of the Omicron subvariant BA.2.75 is rapidly increasing in India and Nepal. In addition, BA.2.75 has been detected in at least 34 other countries and is spreading globally. However, the virological features of BA.2.75 are largely unknown. Here, we evaluated the replicative ability and pathogenicity of BA.2.75 clinical isolates in Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with BA.2, BA.5, or BA.2.75, the replicative ability of BA.2.75 in the lungs was higher than that of BA.2 and BA.5. Of note, BA.2.75 caused focal viral pneumonia in hamsters, characterized by patchy inflammation interspersed in alveolar regions, which was not observed in BA.5-infected hamsters. Moreover, in competition assays, BA.2.75 replicated better than BA.5 in the lungs of hamsters. These results suggest that BA.2.75 can cause more severe respiratory disease than BA.5 and BA.2 and should be closely monitored.


Subject(s)
Respiratory Tract Diseases , Adenocarcinoma, Bronchiolo-Alveolar , Pneumonia
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.15.22276432

ABSTRACT

AbstractImmunity to SARS-CoV-2 in COVID-19 cases has diversified due to complex combinations of exposure to vaccination and infection. Elucidating the drivers for upgrading neutralizing activity to SARS-CoV-2 in COVID-19 cases with pre-existing immunity will aid in understanding immunity to SARS-CoV-2 and improving COVID-19 booster vaccines with enhanced cross-protection against antigenically distinct variants. This study revealed that the magnitude and breadth of neutralization responses to SARS-CoV-2 infection in breakthrough infections are determined by upper respiratory viral load and vaccination-infection time interval, but not by the lineage of infecting viruses. Notably, the time interval, but not the viral load, may play a critical role in expanding the breadth of neutralization to SARS-CoV-2. This illustrates the importance of dosing interval optimization in addition to antigen design in the development of variant-proof booster vaccines. One-Sentence SummaryViral load and infection timing define the magnitude and breadth of SARS-CoV-2 neutralization after breakthrough infection.


Subject(s)
COVID-19 , Breakthrough Pain , Encephalomyelitis, Acute Disseminated
SELECTION OF CITATIONS
SEARCH DETAIL